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A B S T R A C T

In this paper several comments concerning chaos from the viewpoint of theory of stability are made.
Special attention is paid to dependence of orbital instability (leading to chaos) upon frames of reference,
metrics of configuration space, and class of functions selected for mathematical models of physical phenomena.
New representation of chaos is discussed. The theory is illustrated by examples.

1 .  I N T R O D U C T I O N

In recent years an increasing amount of interest has been addressed to the fact that, in many different
domains of science (physics, chemistry, biology, engineering), systems with a similar strange behavior are
frequently encountered. These systems display irregular (aperiodic) time evolution, and are called chaotic.

One of the most obvious limitation of existing methodologies for analysis of chaotic behavior is the fol-
lowing: based upon governing differential equations, in general, chaos cannot be analyzed, or even predicted
without actual numerical runs. The “fatality” of this limitatiorl  was recently established by da Costa, N. and
Doria, F.[2] who, based upon Godel’s incompleteness theorem, presented a rigorous proof to the algorithmic
impossibility of deciding whether a given system of equations has chaotic domains or not in the class of
“elementary” functions. But the validity of numerical runs in the presence of persisting instability is always
in question. Indeed, quoting L. D. Landay ( 1959), “Yet not every solution of the equation of motion, even if
it is exact, can actually occur in Nature. The flows that occur in Nature must not only obey the equations
of fluid dynamics, but also be stable.”, one concludw  that staljility is an attribute of a mathematical model
rather than of a physical phenomenon.

comments concerning chaos from the viewpoint of general theory of

are so complex that their universal theory which would capture all

In this note we will make several
stability.

2 .  B A C K G R O U N D

Most of the dynamical processes
the details during all the time periods is unthinkable. That is why the art of mathematical modeling is
to extract only the fundamental aspects of the process and to neglect its insignificant features, without
losing the core of information. But “insignificant featur~” is not a simple concept. In many cases even
vanishingly  small forces can cause large changes in the dynamical system parameters, and such situations
are intuitively associated with the concept of the instability. Obviously the destabilizing forces cannot be
considered as “ insignificant features,” and therefore, they cannot be ignored. liut since they may be humanly
indistinguishable in the very beginning, there is no way to illcorporate  them  i~lto the model.  This simply
means that the model is not adequate for quantitative descril~tion  of the corresponding dynamical process:
it must be changed or modified. At the same time,  it should be stressed tltat stability is not  an invariant
of motion. Firstly, it may depend upon the frame of reference. For instauce,  the same inviscid flow can be
stable in Eulerian representation and unstable in Lagrangian  one[l],  or in a frame of reference moving with
the streandines,  [12]. Secondly, the stability may depend  UPOIl  t,lle  met,ric,  of corlfiguratiorl  space: the same
solution  can be stable irl otle metric. and unstable ill another dcperlding  Uporl ttle definition of the “ distance”
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between two soiutions  (in the same way in which the same sequence can converge in one space and diverge
in another). For example, as shown by Synge, [6] the motion of a particle:

(1)

derived from the potential

is stable in kinemato-statical sense when the distance between the basic and disturbed trajectories is es-
tablished by the length of the geodesic perpendicular to the disturbed trajectory. But the same motion is
unstable in kinematical sense when the distance is measured hy the length of the line connecting points for
which time t has the same value. In both cases the metric of configuration space is defined via the kinetic
energy W = ~Uijqi$’ :

gij = Uij (2)

Thirdly, the stability may depend upon the class of functions in which the motion is described. For instance,
as shown by Zak, M ,[7], the motion of a filament suspended in a gravity field, is stable in the class of functions
defined in open interval (which does not include the free end), but  it is unstable in the closed interval (snap
of a whip). In this connection one should notice that the gcwerning  equations of classical dynamics, and
in particular, of continuous systems, in addition to Newton’s laws, are based upon a pure mathematical
assumption that all the functions describing the system motions, must be differentiable “as many times as
necessary”. But since this assumption is not always consistent with the physical nature of motions, such an
inconsistency leads to instability (in the class of smooth functions) of the governing equations[7].

Hence, the occurrence of chaos or turbulence in description of mechanical motions means only that
these motions cannot be properly described by smooth functions if the scale of observations is limited.
These arguments can be linked to Godel’s incompleteness thecJrem[3], and the Richardson’s[5]  proof that the
theory of elementary functions in classical analysis is undecidable.

Thus, since instability is not an invariant of motions, the following question can be posed: is it possible
to find such a new (enlarged) class of functions, or a new metric of configuration space, or a new frame  of
reference in order to eliminate instability? Actually such a pc)ssil.)ility  would lead to different representative
parameters describing the same motion in such a way that small uncertainties in external forces cause small
changes of these parameters. For example, in turbulent and chaotic motic)ns,  mean velocities, Reynolds
stresses, and power spectra, represent “stable” parameters, although classical governing equations neither
are explicitly expressed via these parameters, nor uniquely define them.

The first step toward the enlarging of the class of functions for rrlodeling  turbulence was made by
O. Reynolds ( 1895) [4] who decomposed the velocity field into the xnean and pulsating components, and
actually introduced a rnultivalued  velocity field. However, this decomposition brought new unknowns without
additional governing equations, and that created a “closure” }Jtoblem. In 1986 Zak[9-1 1] has shown that the
Reynolds equations can be obtained by referring the Navier-Stokes equations to a rapidly oscillating frame
of reference, while the Reynolds stresses represent the ccmtribution  of inertia forces. From this viewpoint
the “closure” has the same status as “ proof” of Euclid’s parallel postulate, since the motion of the frame of
reference can be chosen arbitrarily. In other words, the “ clc~sure” of Reynolds equations represents a case
of undecidability  in classical mechanics. However, based upon the interpretation of the Reynolds stresses
ss inertia forces, it is reasonable to choose the motion of the frame of reference such that the inertia forces
eliminate the original instability. In other words, the enlarged class  of functions should be selected such
that the solution to the original problem in that class of functions will not possess an exponential sensitivity
to changes in initial conditions, This stabilization principle has been forlnulatecl  and applied to chaotic
and turbulent motions by Zak [7-1 1]. AS shown there, the nlotions  which are chaotic (or turbulent) in the
original frame of reference can be represented as a sum of the “mean” motion and rapid fluctuations, while
both components are uniquely defined. It is worth emphasizing that the amplitude of velocity fluctuation is
proportional  to the degree of the original instability, and therefore, the rapid fluctuations can be associated
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with the measure of the uncertainty in the description of the rrlotion. It should be noticed that both “mean”
and “fluctuation” components representing the originally chaotic motion are stable, i.e., they are not sensitive
to changes of initial conditions, and are fully reproducible.

3. CHAOS IN FAST OSCILLATING FRAME OF RI+; FERENCE

Formally, chaos is caused by instability of trajectories (orbital instability). If the velocity of a particle
is decomposed as C = u? ,(F is the unit vector along the trajectory), then orbital instabilities are identified
with instabilities of F. In other words, the orbital instability leads only to redistribution of the energy
between different coordinates, and it can be associated with au ignorable  variable which does not contribute
into kinetic energy. Therefore, an unlimited growth of this variable does not violate the boundedness  of
energy. That is why the orbital instability may not lead to classical attractors and chaos can emerge.

In dissipative systems the persisting instability can be “ balanced” by dissipative forces in a sense that
exponentially diversing trajectories are locked up within a contracting phase+pace  volume, and this leads to
chaotic attractors. In both  conservative and dissipative systems, exponential divergence of trajectories within
a constant or a contracting volume causes their mixing, so that the motion cannot be traced unless the initial
conditions are known to infinite accuracy. It means that in configuration space, two different trajectories
which may be initially indistinguishable (because of finite scale of observation), diverge exponentially, so that
a “real” trajectory can fill up all the spacing between these exponentially diverging trajectories. In other
words, in the domain of exponential instability, each trajectc~ry “multiplies’ >, and therefore, the predicted
trajectory become multivalued,  so the velocities can be considered as random variables:

I (3)

I
where ~ and c for a fixed t are a function and a point on a probability space, respectively. Let us refer the
original equations of motions to a non-inertial frame of reference which rapidly oscillate with respect to the
original inertial frame of reference. Then the absolute velocity q can be decomposed into the relative velocity
ql and the transport velocity 92 = 292(.):

9 =  41 +  292(o) coswt, w + co

I while 91 and qj are “slow” functions of time in the sense that

1
w>>–

T

where ~ is the time scale upon which the changes ql and ~210) can be ignored

Then for the mean {:

!
l>T 1

q = ql since 92(0)  c.oswt~t  = ;gz(.)sinwt  + O if w + m
0

In other words, a fast oscillating velocity practically does not change the cfisplac.ements.

Taking into account that

w J
2x/w

/

2x/Ld

J
2r/ld

%0
Ijldf  CY ql, 92(.) sinwtdt z O, 92(.) Coswtd  = o

0 0

1
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and (j;(o) COS 2 
Wtdt  = j;(o)

0

one can transform a system:
ii =fl; zj+bj”, ziz’~’, i:: 1,2, . ..?1

(4)

(5)

(6)

(7)

(8)
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into the following form: —.
~i = a~~j +b~m$”zm,  -t b~mzjz’;, i = 1,2,...11 (9)

where =i and ~ are means and double-correlations of x’ a.s random variables, respectively.

Actually the transition from (8) to (9) is identical to the Reynolds transformation: indeed, being applied
to the Navier-Stokes equations, it leads to the Reynolds equations, and therefore, the last terms in (9) (which
is a contribution of inertial forces due to fast oscillations of the frame of reference) can be identified with
the Reynolds stresses. From a mathematical viewpoint, this transformation is interpretable as an enlarging
the class of smooth functions to multivalued  ones. Indeed, as follows from (5), for any arbitrarily small
interval At, there always exists such a large frequency u > At/2~ that within this interval the velocity q
runs through all its values, and actually the velocity field becomes multivalues.

The most significant advantage of the Reynolds-type equations (9) is that they are explicitly expressed
via the physically reproducible parameters ~’,~ which describe, for instance, a mean velocity profile in
turbulent motions, or a power spectrum of chaotic attractors. However, as a price for that, these equations
require a closure since the number of unknowns in there is larger than the number of equations. Actually the
closure problem has existed for almost hundred years since the Reynolds equations were derived, In the next
sections, based upon the stabilization principle introduced by Zak, M.[8- 10] this problem will be discussed.

4 .  CLOSURE OF REYNOLDS-TYPE EQUATIONS USINC+ S T A B I L I Z A T I O N  P R I N C I P L E

The main purpose of the transition from the form (8) tc> the form (9) is to change the representative
parameters describing the motion in such a way that they become physically reproducible, i.e., mathemat-
ically stable. Hence, the next logical step is to utilize the extra-variable-s, i.e., the Reynolds stresses, for
elimination of the original instability. In other words, one can seek such an additional relationships:

(lo)

which makes the system (9), ( 10) stable. Obviously, in this posedness of the problem, the solution to
the system (9), (10) is not unique: the system can be overstablized  to any degree, while each of these
stable solutions will have physical meaning. But for the best solution one has to minimize the uncertainties
represented by the Reynolds stresses, and therefore, the system should be brought to the boundary of
instability. Since the orbital instability causing chaos is characterized by positive Lyapunov exponents ~~”,
one should select the Reynolds stresses in (9) such that

A:=o (11)

while keeping the rest of the Lyapurrov exponents without changes:

(12)

where A:, ~~, ~~ and ~~ are non-positive Lyapunov exponents of the system (9), (10) and equation (8),
respectively.

Clearly, those components of the Reynolds stresses whic]l do not affect the Lyapunov exponents, must
be omitted. 111 general, the solution to equations (9- 12) will eventually approach a set of periodic attractors
which “replaces” the chaotic. attractor of equation (8). However one should consider these sets not as an
approximation to the original chaotic attractor, but, rather as a different way of mathematical representation)
of the same physical phenormmon. This representation is provided by a new frame of reference whose
oscillations are coupled with the dynamical variables such that the inertia forms (i.e. the Reynolds stresses)
generated by transport motion, eliminate the original instability. In other  words, the new frame of reference
provides the best “ view” of the motion.
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The decomposition (9) applied to equation (8), generates not only pair correlations ~, but also
correlations of higher order, such as triple correlations ~ZT, quadruple correlations zizJ zkxm,  etc. Indeed,
multiplying equation (8) by Zk and averaging and combining the results, one obtains the governing equations

for the pair correlations =;

--. —
which contain nine additional triple correlations Z’Z~ Zk.

Now the application of the stabilization principle will lead to the system (9- 13) which will define ii, =
and those components of triple corrections = which affect the Lyapunc)v exponents in equations ( 11)
and (12). Hence, the solutions to the systems (9- 12) and (9- 13) can be regarded as the first and the
second approximation, respectively, to the problem. Theoretically speaking, by considering next order
approximations, a complete probabilistic structure of the solution to equation (8) can be reproduced.

Applications of the stabilization principle is significantly simplified for those systems whose boundaries
of instability can be formulated analyticaUy.  For some cases of con- servative  cha~ and simple turbulent
flows new representations of solutions were given by Zak, M.[7- 11].

In the next section we will demonstrate application of the stabilization principle to a dissipative chaotic
system known as the Lorentz attractor by numerical elimination of positive local Lyapunov exponents.

5 .  P R E D I C T I O N  O F  M E A N  F L O W

Applying the transformation (4) to the Rossler attractor:

1 1
il =—Zt—~3,iz  =Zli-–Zt,i3=  ‘—p~3-t~lZ3

5 5
(14)

represents it in the form (9):

where 21, k2, =3 are the mean values of Zl, X2) and Z3, while Z1Z3 and 21X2 are double correlations repre--—. . .

senting  the Reynolds “stresses”.

As extra-variables, these double correlations must be found from the condition that they suppress the
positive Lyapunov  exponent down to zero. In this case both the mean and the double-correlations components
of the motion will be represented by periodic attractors, i.e. in a fully deterministic way.

Numerical implementation of this strategy performed for p = 5.7 leads to the following results. The
mean flow expressed via the variables S1, i2, 53 is represented by a multi-periodic (but not chaotic) attractor
plotted in Fig. 1. The initial error in ii (which is of order of 10-6) does not grow exponentially: it oscillates
between 20.10 -6 and (–40.10-6).

lt should be stressed that the solution to Eq. ( 15) plotted in Fig. 1 is stable (in the new Ch-SS of
functions which includes “rnultivalued”  fluctuations): small changes in initial conditions will lead to small
changes in the solution.

One should recall  that although equations ( 15) is different from the original Rossler equations ( 14), they
describe the same physical phenomenon in a specially selected fast oscillating frame of reference.
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The second example illustrates prediction of the mean flOW in chcaotic behavior of a charged particle in
a uniform magnetic fiei{i:

–~+vz, v,==-~“=-; -v’’v’-# Jr2=-z2+ y2+z2), i=-v= ,y=vy, z=vz (16)

The system is chaotic if, for instance,

Z=l.5; y=O, z=4.0;  v== vY=vz=O.O1  a t  t=O (17)

The Fig. 2 demonstrates chaotic region in the space z, y, z. Application of the stabilization principle leads
to the multi-periodic (but not chaotic) mean-flow plotted in Fig. 3.

Figure 1

~-”
Figure 2

‘L .-–. -.. L  . ..___L

Figure 3
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